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Abstract

A beam theory for the stability analysis of short beam that includes shear deformation and warping of the cross-
section is developed. The warping of the cross-section is taken to be an independent kinematics quantity and corre-
sponding force resultants are defined. For the beam subjected to the external loading only at the ends of the beam,
equilibrium equations have been obtained by the principle of virtual work. The variations of lateral displacement,
rotational angle of the cross-section and the multiplier of the warping shape along the beam axis are solved in closed
form and expressed in terms of deformation quantities at the ends of the beam. Based on this beam theory, the lateral
stiffness of the beam sustained an axial compression force and a lateral shear force at one end is explicitly derived,
from which the equation of the buckling load is established and the buckling load can be solved. When the effect
of cross-section warping is neglected, the derived lateral stiffness and buckling load converge to the solutions of
the Haringx theory.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

A multilayer elastomeric bearing used for the seismic or vibration isolation of buildings or equipments is
susceptible to a type of buckling instability similar to that of an ordinary column, even though it is a rel-
atively squat component. As the shear stiffness of an isolator can be two orders of magnitude smaller than
the compression stiffness or the resistance to bending, the deformation of this type of isolator is dominated
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by shear. The large stiffness difference is achieved by having many layers of elastomer (usually comprised of
natural rubber) reinforced by steel plates. The reinforcing plates constrain the elastomer from lateral expan-
sion and provide a high vertical and bending stiffness, but have no effect on the shear stiffness.
Since the isolators are always used to carry vertical load, it is essential that their stability can be assessed

in a reasonably simple manner. For this reason, a buckling analysis is used that treats the isolator as a com-
posite column with low shear stiffness. In the standard approach, the bearing is assumed to be a beam, and
plane sections, normal to the undeformed axis before deformation, are assumed to remain plane but not
necessarily normal after deformation. The theory is an outgrowth of work by Haringx on the mechanical
characteristics of helical steel springs and rubber rods used for vibration mounting. This work was pub-
lished as a series of technical reports, the third of which (Haringx, 1948) covers the stability of rubber rods.
The Haringx theory was later applied by Gent (1964) to multilayer elastomeric bearings. Tsai and Hsueh
(2001) extended the Haringx theory to the viscoelastic column to study the behavior of isolation bearings
that possess an energy-dissipation capacity.
The assumption that plane sections remain plane disables the Haringx theory from studying the influence

of the flexibility of the reinforcing plates on the buckling of the isolator. In this paper, a theory is developed
that extends the Haringx theory by allowing the cross-sections to deform into a non-planar surface. The
warping of the cross-section, which is permitted by the flexibility of the reinforcing sheets, is taken into ac-
count by introducing a kinematics displacement function that produces no rotation of the section but meas-
ures the deviation from plane of the deformed cross-section. Force resultants that arise from the presence of
this kinematics quantity are also introduced and constitutive equations for these quantities are derived. The
appropriate equations of equilibrium incorporating these new force quantities are developed. The lateral
stiffness and buckling load that include the shear and warping effects are derived for the beam subjected
to an axial compression force and a lateral shear force at one end of the beam. It should be noted that
the terminology of warping used here is not associated with torsion; it just specifies the distortion of the
cross-section created by moment and shear.
2. Governing equations

The prismatic beam shown in Fig. 1 adopts a rectangular coordinate system such that the X and Y-axes
lie in the cross-section and the Z-axis coincides with the axis of centroids along the beam. The cross-section
is symmetric to the X and Y-axes. Flexural deformation is assumed to take place in the X–Z plane. The
displacements of the beam in the X and Z directions, denoted as �u and w respectively, are taken to be
�uðX ; ZÞ ¼ tðZÞ ð1Þ

wðX ; ZÞ ¼ �DðZÞ � XwðZÞ þ XðX Þ/ðZÞ ð2Þ
which indicates that the deformation of the beam is characterized by the four displacement functions of Z
coordinate: t as the lateral displacement at the centroid of the cross-section in the X direction, D as the axial
displacement at the centroid of the cross-section in the negative Z direction, w as the average angle of rota-
tion of the cross-section in the Y direction, and / as the multiplier of the warping function X which is a
prescribed function of X defining the warping shape of the cross-section. The rotation of the cross-section
w is assumed as a small angle. The deviation of the cross-section of the deformed beam from a plane surface
is measured by X(X)/(Z). The selection of X to be dimensionless means the warping multiplier / has units
of displacement. According to infinitesimal strain definitions, the resulting normal strain eZZ and shear
strain cXZ are
eZZ ¼ w;Z ¼ �D;Z � Xw;Z þ X/;Z ð3Þ
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Fig. 1. Deformation of beam with cross-section warping.
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cXZ ¼ �u;Z þ w;X ¼ t;Z � w þ X;X/ ð4Þ

where the commas imply partial differentiation with respect to the indicated coordinate.
Large lateral deformation can change the length of the beam. To calculate this effect, the lateral defor-

mation of an infinitesimal section of the beam is depicted in Fig. 2. For clarity, the warping of cross-section
is not plotted in the figure. At first, the section has a rigid rotation h1 ¼ w;X that creates a vertical movement
D1 ¼ dZ � dZ cos h1 �
1

2
h21dZ ð5Þ
Then, the shear deformation is applied to the rotated section and forms the angle h2 = cXZ that makes a
vertical movement
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Fig. 2. Vertical displacement created by large lateral deformation.
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D2 ¼ ðdZ tan h2Þ sin h1 � h1h2dZ ð6Þ

Therefore, the total vertical movement created by the lateral deformation is
D2 � D1 ¼ cXZw;X � 1
2
w2;X

� �
dZ ð7Þ
Using Eq. (4), the corresponding axial strain becomes
e ¼ D2 � D1
dZ

¼ 1
2
ðw � X;X/Þ2 � t;Zðw � X;X/Þ ð8Þ
Including this deformation effect, the internal virtual work of the beam has the following variation form
dW i ¼
Z h

0

Z
A

rZZdðeZZ � eÞ þ sXZdcXZ½ �dAdZ ð9Þ
in which the integration is carried out over the undeformed shape, h is the length of the undeformed beam
and A is the area of the undeformed cross-section. The normal stress rZZ and shear stress sXZ are based on
infinitesimal deformation. Different from the consistent approach of buckling analysis that requires the use
of finite deformation theory, we use the infinitesimal deformation theory to define the strain and stress. The
nonlinear effect caused by the buckling is then introduced through Eq. (8). Because the main issues here are
the buckling load and the stiffness reduction before buckling, not the post-buckling behavior, the error aris-
en from this simplified approach is negligible. From Eq. (9), if the shear deformation and cross-section
warping are neglected, the same governing equations for beam buckling can be established as those derived
from force equilibrium in the textbook of strength of materials.
Using Eq. (3), the virtual work done by the normal stress becomes
Z h

0

Z
A

rZZdeZZ dAdZ ¼
Z h

0

ðNdD;Z þMdw;Z þ Qd/;ZÞdZ ð10Þ
in which N is the axial compression force,
N ¼ �
Z
A

rZZ dA ð11Þ
M is the bending moment,
M ¼ �
Z
A

rZZX dA ð12Þ
and Q is called the warping moment,
Q ¼
Z
A

rZZXdA ð13Þ
which has units of force.
Using Eq. (4), the virtual work done by the shear stress becomes
Z h

0

Z
A

sXZdcXZ dAdZ ¼
Z h

0

½V dðt;Z � wÞ þ Rd/�dZ ð14Þ
in which V is the shear force,
V ¼
Z
A

sXZ dA ð15Þ
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and R is called the warping shear,
R ¼
Z
A

sXZX;X dA ð16Þ
which has units of force per length.
Taking integration by part, the internal virtual work in Eq. (9) becomes
dW i ¼ NdDjh0 þMdwjh0 þ Qd/jh0 þ ðV � Nw þ NB/Þdtjh0 �
Z h

0

N ;Z dDdZ

�
Z h

0

½M ;Z þ V þ Nðt;Z � wÞ þ NB/�dwdZ �
Z h

0

½Q;Z � R� NBðt;Z � wÞ � NC/�d/dZ

�
Z h

0

ðV � Nw þ NB/Þ;Z dtdZ ð17Þ
in which NB and NC are two normal forces related to cross-section warping, defined as
NB ¼ �
Z
A

rZZX;X dA ð18Þ

NC ¼ �
Z
A

rZZX
2
;X dA ð19Þ
If the external forces act at the ends of the beam only, the principle of virtual work generates the following
equilibrium equations
N ;Z ¼ 0 ð20Þ

ðV � Nw þ NB/Þ;Z ¼ 0 ð21Þ

M ;Z þ V þ Nðt;Z � wÞ þ NB/ ¼ 0 ð22Þ

Q;Z � R� NBðt;Z � wÞ � NC/ ¼ 0 ð23Þ

These are the same as the equations solved directly from force equilibrium (Kelly, 1994).
For the homogeneous elastic beam, the shear stress has the form, from Eq. (4),
sXZ ¼ Gðt;Z � w þ X;X/Þ ð24Þ

with G being the shear modulus. Substituting this into Eqs. (15) and (16), respectively, gives
V ¼ GAðt;Z � wÞ þ GB/ ð25Þ

R ¼ GBðt;Z � wÞ þ GC/ ð26Þ

in which B and C are cross-section properties of warping defined as
B ¼
Z
A

X;X dA and C ¼
Z
A

X2;X dA ð27Þ
From Eqs. (25) and (26), Eq. (24) becomes
sXZ ¼ C � BX;X

AC � B2

� �
V � B� AX;X

AC � B2

� �
R ð28Þ
For the homogeneous elastic beam, the normal stress has the form, from Eq. (3),
rZZ ¼ Eð�D;Z � Xw;Z þ X/;ZÞ ð29Þ
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with E being the elastic modulus. It is convenient to select the warping function X such that the axial force
N defined in Eq. (11) and the bending momentM defined in Eq. (12) are independent of X. The appropriate
form of the warping function X must satisfy the following condition
Z

A
XdA ¼ 0 ð30Þ

Z
A
XXdA ¼ 0 ð31Þ
For the cross-section that is symmetric to the X and Y-axes, Eq. (30) indicates that the warping function X
is an odd function of X. There are many forms that the warping function could take, but Eq. (31) implies
that the simplest warping function is a cubic polynomial with a form
XðX Þ ¼ X
a

� �3
þ x

X
a

� �
ð32Þ
in which a is a dimension of the cross-section in the X direction and x is a constant determined from Eq.
(31).
Substituting Eq. (29) into Eq. (11) gives
N ¼ EAD;Z ð33Þ

Substituting Eq. (29) into Eqs. (12) and (13), respectively, and using the property in Eq. (31) give
M ¼ EIw;Z ð34Þ

Q ¼ EJ/;Z ð35Þ
in which I is the second moment of area defined as
I ¼
Z
A
X 2 dA ð36Þ
and J is a cross-section property of the warping shape defined as
J ¼
Z
A

X2 dA ð37Þ
Therefore, Eq. (29) becomes
rZZ ¼ �N
A
� X

M
I
þ X

Q
J

ð38Þ
Because X,X is an even function of X, substituting Eq. (38) into Eqs. (18) and (19) lead to
NB ¼ B
A
N ð39Þ

NC ¼ C
A
N ð40Þ
Eq. (38) indicates that the stress created by the axial force is uniform in the cross-section and the stress
created by the bending moment is linearly varied for the homogeneous beams. For the reinforced isolators,
the stress distribution is different from Eq. (38), so that the expressions of axial stiffness EA, bending stiff-
ness EI and warping stiffness EJ are different from the expressions in the homogeneous beam.
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3. General solution

When the external loading acts only at the ends of the beam, the vertical and horizontal force resultants
acting on the cross-section are constant through the beam. From Eqs. (20) and (21), we have
N ¼ P ð41Þ

V � Nw þ NB/ ¼ F ð42Þ

where P is the vertical compression force acting on the beam and F is the horizontal shear force acting on
the beam.
Substituting Eq. (25) into Eq. (42) gives
t;Z ¼ 1þ P
GA

� �
w � GBþ NB

GA

� �
/ þ F

GA
ð43Þ
Substituting Eqs. (25) and (34) into Eq. (22) and using Eq. (43) to eliminate the term of t,Z lead to
/ ¼ GA
GBþ NB

EI
P

w;ZZ þ 1þ P
GA

� �
w þ 1þ P

GA

� �
F
P

� �
ð44Þ
Substituting Eqs. (26) and (35) into Eq. (23) and using Eq. (43) to eliminate the term of t,Z lead to
w ¼ GA
ðGBþ NBÞP

EJ/;ZZ þ
ðGBþ NBÞ2

GA
� ðGC þ NCÞ

" #
/

( )
� F

P
ð45Þ
Substituting Eq. (44) into Eq. (45) yields
w;ZZZZ þ
P ð1þ P Þ þ jb � jc

qh2
w;ZZ �

P ½ð1þ PÞjc � jb�
q2h4

w ¼ P ½ð1þ P Þjc � jb�
q2h4

F
P

ð46Þ
in which P is the dimensionless compression force defined as
P ¼ P
GA

ð47Þ
q is the ratio of the flexure rigidity to shear rigidity
q ¼ EI

GAh2
ð48Þ
jb and jc are two parameters corresponding to cross-section warping
jb ¼
EI
EJ

GBþ NB

GA

� �2
ð49Þ

jc ¼
EI
EJ

GC þ NC

GA

� �
ð50Þ
If the complementary solution of w in Eq. (46) has the form w = emZ, then m can be solved from
m4 þ P ð1þ PÞ þ jb � jc

qh2
m2 � P ½ð1þ P Þjc � jb�

q2h4
¼ 0 ð51Þ
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which gives
m2 ¼ � b1
2qh2

and m2 ¼ b2
2qh2

ð52Þ
with
b1 ¼ ½P ð1þ P Þ þ jb � jc� þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½P ð1þ P Þ þ jb � jc�2 þ 4P ½ð1þ P Þjc � jb�

q
ð53Þ

b2 ¼ �½P ð1þ P Þ þ jb � jc� þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½P ð1þ P Þ þ jb � jc�2 þ 4P ½ð1þ P Þjc � jb�

q
ð54Þ
The parameters b1 and b2 are real number, because the term inside the square root in Eqs. (53) and (54),
which equals to ½Pð1þ P Þ � ðjb � jcÞ�2 þ 4jbP

2
, is always positive. For ð1þ P Þjc � jb P 0, it knows

b1 P 0 and b2 P 0. For ð1þ PÞjc � jb < 0, it knows b1 P 0 but b2 < 0. The solutions of m are
m ¼ 
i
ffiffiffiffiffiffiffiffiffiffi
b1
2qh2

s
and m ¼ 


ffiffiffiffiffiffiffiffiffiffi
b2
2qh2

s
ð55Þ
in which i ¼
ffiffiffiffiffiffiffi
�1

p
.

The general solution of w to Eq. (46) has the form
w ¼ c1 cos

ffiffiffiffiffiffi
b1
2q

s
Z
h
þ c2 sin

ffiffiffiffiffiffi
b1
2q

s
Z
h
þ c3 cosh

ffiffiffiffiffiffi
b2
2q

s
Z
h
þ c4 sinh

ffiffiffiffiffiffi
b2
2q

s
Z
h
� F

P
ð56Þ
in which ci is the constant determined from boundary conditions. Substituting the above equation into Eq.
(44) gives
/ ¼ GA
GBþ NB

1þ P � b1
2P

� �
c1 cos

ffiffiffiffiffiffi
b1
2q

s
Z
h
þ c2 sin

ffiffiffiffiffiffi
b1
2q

s
Z
h

 !
þ 1þ P þ b2

2P

� �"

� c3 cosh

ffiffiffiffiffiffi
b2
2q

s
Z
h
þ c4 sinh

ffiffiffiffiffiffi
b2
2q

s
Z
h

 !#
ð57Þ
Substituting Eqs. (56) and (57) into Eq. (43) gives
t;Z ¼ b1
2P

c1 cos

ffiffiffiffiffiffi
b1
2q

s
Z
h
þ c2 sin

ffiffiffiffiffiffi
b1
2q

s
Z
h

 !
� b2
2P

c3 cosh

ffiffiffiffiffiffi
b2
2q

s
Z
h
þ c4 sinh

ffiffiffiffiffiffi
b2
2q

s
Z
h

 !
� F

P
ð58Þ
from which
t ¼ h

P

ffiffiffiffiffiffiffiffi
qb1
2

r
c1 sin

ffiffiffiffiffiffi
b1
2q

s
Z
h
þ c2 1� cos

ffiffiffiffiffiffi
b1
2q

s
Z
h

 !" #

� h

P

ffiffiffiffiffiffiffiffi
qb2
2

r
c3 sinh

ffiffiffiffiffiffi
b2
2q

s
Z
h
þ c4 cosh

ffiffiffiffiffiffi
b2
2q

s
Z
h
� 1

 !" #
� F

P
Z þ tð0Þ ð59Þ
By assigning Z = 0 and Z = h into Eqs. (56),(57) and (59), we can solve the constants as
c1 ¼
2P

b1 þ b2
1þ P þ b2

2P

� �
F
P
þ wð0Þ

� �
� GBþ NB

GA
/ð0Þ

� �
ð60Þ
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c2 ¼
2P

ðb1 þ b2Þ sin
ffiffiffiffi
b1
2q

q 1þ P þ b2
2P

� �
F
P
1� cos

ffiffiffiffiffiffi
b1
2q

s !
þ wðhÞ � wð0Þ cos

ffiffiffiffiffiffi
b1
2q

s" #(

�GBþ NB

GA
/ðhÞ � /ð0Þ cos

ffiffiffiffiffiffi
b1
2q

s" #)
ð61Þ

c3 ¼
2P

b1 þ b2
� 1þ P � b1

2P

� �
F
P
þ wð0Þ

� �
þ GBþ NB

GA
/ð0Þ

� �
ð62Þ

c4 ¼
2P

ðb1 þ b2Þ sinh
ffiffiffiffi
b2
2q

q � 1þ P � b1
2P

� �
F
P
1� cosh

ffiffiffiffiffiffi
b2
2q

s !
þ wðhÞ � wð0Þ cosh

ffiffiffiffiffiffi
b2
2q

s" #(

þGBþ NB

GA
/ðhÞ � /ð0Þ cosh

ffiffiffiffiffiffi
b2
2q

s" #)
ð63Þ
with
F
P
¼ ðb1 þ b2Þffiffiffiffiffiffi

2q
p tðhÞ � tð0Þ

h

� �
� 1þ P þ b2

2P

� � ffiffiffiffiffi
b1

p
tan

ffiffiffiffiffiffi
b1
8q

s
þ 1þ P � b1

2P

� � ffiffiffiffiffi
b2

p
tanh

ffiffiffiffiffiffi
b2
8q

s" #
½wðhÞ

(

þwð0Þ� þ
ffiffiffiffiffi
b1

p
tan

ffiffiffiffiffiffi
b1
8q

s
þ

ffiffiffiffiffi
b2

p
tanh

ffiffiffiffiffiffi
b2
8q

s !
GBþ NB

GA

� �
½/ðhÞ þ /ð0Þ�

)

2 1þ P þ b2
2P

� � ffiffiffiffiffi
b1

p
tan

ffiffiffiffiffiffi
b1
8q

s"
þ 1þ P � b1

2P

� � ffiffiffiffiffi
b2

p
tanh

ffiffiffiffiffiffi
b2
8q

s( #
� ðb1 þ b2Þffiffiffiffiffiffi

2q
p

, )
ð64Þ
4. Lateral stiffness and buckling load

For the beam shown in Fig. 3, its lower end is fixed against any displacement, rotation and warping,
whereas the upper end is allowed to move horizontally and vertically but is still constrained against rotation
h

P

F

Z

X

Fig. 3. Beam subjected to axial compression and lateral shear at one end.
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and warping. The upper end of the beam is subjected to a compressive force P and a horizontal force F. The
lateral stiffness of the beam is defined as
KH ¼ F
tðhÞ ð65Þ
Substituting the boundary conditions at the lower end, t(0) = 0, w(0) = 0 and /(0) = 0, and at the upper
end, w(h) = 0 and /(h) = 0, into Eq. (64), the lateral stiffness of the beam can be solved as
KH ¼ GA
h

� �
P

2Pð1þPÞþb2
Pðb1þb2Þ

ffiffiffiffiffiffiffiffiffiffi
2qb1

p
tan

ffiffiffiffi
b1
8q

q
þ 2Pð1þPÞ�b1

Pðb1þb2Þ

ffiffiffiffiffiffiffiffiffiffi
2qb2

p
tanh

ffiffiffiffi
b2
8q

q
� 1

ð66Þ
which is the solution for ð1þ P Þjc � jb P 0. When ð1þ P Þjc � jb < 0, then b2 < 0, the above equation can
be expressed in terms of real numbers as
KH ¼ GA
h

� �
P

2Pð1þPÞþb2
Pðb1þb2Þ

ffiffiffiffiffiffiffiffiffiffi
2qb1

p
tan

ffiffiffiffi
b1
8q

q
� 2Pð1þPÞ�b1

Pðb1þb2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2qjb2j

p
tan

ffiffiffiffiffi
jb2j
8q

q
� 1

ð67Þ
When the lateral stiffness equals zero, the beam becomes unstable and the corresponding compression
force is referred to as buckling load Pcr. In Eq. (66), KH = 0 when
ffiffiffiffiffiffi

b1
8q

s
¼ p
2

ð68Þ
In Eq. (67), KH = 0 when
ffiffiffiffiffiffi
b1
8q

s
¼ p
2

or

ffiffiffiffiffiffiffiffi
jb2j
8q

s
¼ p
2

ð69Þ
Using Eqs. (53) and (54), the conditions in Eqs. (68) and (69) give the same equation
P ½ð1þ PÞjc � jb� þ p2q½P ð1þ P Þ þ jb � jc� � p4q2 ¼ 0 ð70Þ

which is the equation being applied to solve the buckling load of the beam.
To find lateral stiffness without compressive load, assume P 
 1 and apply the following series

expansion
ffiffiffiffiffiffiffiffiffiffiffi
1þ x

p
� 1þ 1

2
x� 1

8
x2 þ � � � ð71Þ
on Eqs. (53) and (54). When ð1þ P Þjc � jb > 0, this gives
b1 � 2P 1þ jc

jc � jb
P

� �
and b2 � 2ðjc � jbÞ ð72Þ
Substituting these into Eq. (66) and neglecting high-order terms of P lead to
KH ¼ GA
h

� �
1

1þ 1
12q þ

jb
jc�jb

1� tanh
ffiffiffiffiffiffiffiffiffi
jc�jb
4q

q� � ffiffiffiffiffiffiffiffiffi
jc�jb
4q

q� �� ð73Þ
When ð1þ PÞjc � jb < 0,
b1 � 2ðjb � jcÞ and b2 � �2P 1þ jc

jc � jb
P

� �
ð74Þ



H.-C. Tsai, J.M. Kelly / International Journal of Solids and Structures 42 (2005) 239–253 249
Substituting these into Eq. (67) and neglecting high-order terms of P give
KH ¼ GA
h

� �
1

1þ 1
12q �

jb
jb�jc

1� tan
ffiffiffiffiffiffiffiffiffi
jb�jc
4q

q ! , ffiffiffiffiffiffiffiffiffi
jb�jc
4q

q" # ð75Þ
Eq. (73) is the solution of KH at P = 0 when jc > jb. Eq. (75) is the solution of KH at P = 0 when jc < jb.
If the effect of cross-section warping is not considered, we can set EJ! 1, such that jb = 0 and jc = 0

which give, from Eqs. (53) and (54),
b1 ¼ 2P ð1þ P Þ and b2 ¼ 0 ð76Þ

Substituting these into Eq. (66) gives
KH ¼ GA
h

� �
Pffiffiffiffiffiffiffiffiffiffiffiffi

4qð1þPÞ
P

q
tan

ffiffiffiffiffiffiffiffiffiffiffi
Pð1þPÞ
4q

q
� 1

ð77Þ
When P ! 0, the above equation becomes
KH ¼ GA
h

� �
1

1þ 12
q

ð78Þ
which means, from Eq. (48),
1

KH
¼ h

GA
þ h3

12EI
ð79Þ
In Eq. (77), KH = 0 when
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P ð1þ P Þ
4q

s
¼ p
2

ð80Þ
from which the buckling load of the beam without cross-section warping can be solved as
P cr ¼ GA
�1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4p2q

p
2

 !
ð81Þ
which is the same as the solution derived by Haringx�s theory (Kelly, 1997).
5. Examples of homogeneous beams

If the beam is homogeneous and has symmetric cross-section, substituting Eqs. (39) and (40) into Eqs.
(49) and (50), respectively, leads to
jb ¼
1

J
B
A

� �2
ð1þ P Þ2 ð82Þ

jc ¼
1

J
C
A

� �
ð1þ PÞ ð83Þ
For the rectangular cross-section having a side length 2a along the X-axis and 2b along the Y-axis, the
warping function that satisfies the condition in Eq. (31) is
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XðX Þ ¼ X
a

� �3
� 3
5

X
a

� �
ð84Þ
Substituting this into Eqs. (37) and (27) gives J ¼ 16
175

ba, B ¼ 8
5
b and C ¼ 96

25
b
a. The other cross-sectional

properties are A = 4ba and I ¼ 4
3
ba3. The warping parameters in Eqs. (82) and (83) become
jb ¼
7

3
ð1þ P Þ2 and jc ¼ 14ð1þ P Þ ð85Þ
which satisfy the condition ð1þ P Þjc � jb P 0. The parameters b1 and b2 in Eqs. (53) and (54) become
b1 ¼
10

3
ð1þ P Þ P � 7

2

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P � 7

2

� �2
þ 21
5
P

s2
4

3
5 ð86Þ

b2 ¼
10

3
ð1þ P Þ � P � 7

2

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P � 7

2

� �2
þ 21
5
P

s2
4

3
5 ð87Þ
Substituting these parameters into Eq. (66), the dimensionless lateral stiffness KHh/(GA) becomes a function
of q and P . The variations of the lateral stiffness with the compression force for different q values are plotted
in Fig. 4, which reveals that the lateral stiffness decreases with increasing compression force or reducing q
value. The lateral stiffness at P = 0 is calculated from Eq. (73).
For the circular cross-section of radius a, the warping function is
XðX Þ ¼ X
a

� �3
� 1
2

X
a

� �
ð88Þ
Substituting this into Eqs. (37) and (27) gives J ¼ p
64
a2, B ¼ p

4
a and C ¼ 5p

8
. The other cross-sectional prop-

erties are A = pa2 and I ¼ p
4
a4. The warping parameters in Eqs. (82) and (83) become
jb ¼ ð1þ P Þ2 and jc ¼ 10ð1þ PÞ ð89Þ
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Fig. 4. Lateral stiffness of rectangular beams varied with compression load.
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which satisfy the condition ð1þ PÞjc � jb P 0. The parameters b1 and b2 in Eqs. (53) and (54) become
b1 ¼ 2ð1þ P Þ P � 9
2

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P � 9

2

� �2
þ 9P

s2
4

3
5 ð90Þ

b2 ¼ 2ð1þ P Þ � P � 9
2

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P � 9

2

� �2
þ 9P

s2
4

3
5 ð91Þ
Substituting these parameters into Eq. (66), the dimensionless lateral stiffness KHh/(GA) becomes a function
of q and P . Similar to the rectangular section, the variations of the lateral stiffness with the compression
force for several q values plotted in Fig. 5 reveal that the lateral stiffness decreases with increasing compres-
sion force or reducing q value. The lateral stiffness at P = 0 is calculated from Eq. (73).
The lateral stiffness of the rectangular beam and the circular beam having the same rigidity ratio q = 10

are plotted in Fig. 6, which reveals that the circular beam has higher lateral stiffness. The figure also plots
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Fig. 5. Lateral stiffness of circular beams varied with compression load.
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Fig. 6. Warping effect on lateral stiffness of homogeneous beams (q = 10).
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Fig. 7. Warping effect on buckling load of homogeneous beams.
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the lateral stiffness without cross-section warping calculated from Eq. (77), which shows that the lateral
stiffness decreases with including the effect of cross-section warping.
For the rectangular beam, the buckling load equation in Eq. (70), becomes
P
3

cr þ 2þ 2
7

p2q

� �
P
2

cr þ 1� 5
7

p2q

� �
P cr � p2q þ 3

35
p4q2

� �
¼ 0 ð92Þ
which is a cubic equation of the buckling load Pcr and can be solved by the numerical method for a specified
q value. For the circular beam, the buckling load equation is
P
3

cr þ 2þ 2
9

p2q

� �
P
2

cr þ 1� 7
9

p2q

� �
P cr � p2q þ 1

9
p4q2

� �
¼ 0 ð93Þ
The numerically solved buckling loads of the rectangular beam and the circular beam are plotted in Fig. 7
as a function of q, which shows that the buckling load increases with increasing rigidity ratio. The figure
also plots the buckling load without cross-section warping calculated from Eq. (81), which shows that
the buckling load decreases with including the effect of cross-section warping.
6. Conclusion

A beam theory has been developed for the stability analysis of short beam in which shear deformation
and warping of the cross-section are included. The warping of the cross-section is taken to be an independ-
ent kinematics quantity and corresponding force resultants has been defined. Constitutive equations relat-
ing the kinematics quantities that arise in the theory to the force quantities has been developed and
equilibrium equations have been obtained by the principle of virtual work.
The flexural deformation of the beam can be described by the three quantities: lateral displacement, rota-

tional angle of the cross-section and the multiplier of the warping shape. For the beam subjected to the
external loading only at the ends of the beam, the variations of these three quantities along the beam axis
are solved in closed form and expressed in terms of deformation quantities at the ends of the beam.
For the beam sustained an axial compression force and a lateral shear force at one end, the lateral stiff-

ness of the beam, which includes the effects of stability, shear and warping, is explicitly derived. By setting
the lateral stiffness equal to zero, the equation of the buckling load is established, from which the buckling
load can be solved by numerical method. By setting the rigidity of cross-section warping to infinity, the
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warping effect is neglected and the lateral stiffness and buckling load converge to the solutions of the
Haringx theory.
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